

International Journal of Theoretical & Applied Sciences,

ISSN No. (Print): 0975-1718 ISSN No. (Online): 2249-3247

H_g -Normal and H_g -Regular Spaces

Rajni Bala Department of Mathematics, Punjabi University, Patiala, 147002, (Punjab), India.

(Corresponding author Rajni Bala) (Received 14 August, 2017, accepted 29 November, 2017) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: \mathcal{H}_g -normal and \mathcal{H}_g -regular spaces are introduced by means of a generalized topological space (X, μ) and a hereditary class \mathcal{H} and different characterizations and properties of these spaces are discussed.

AMS Subject Classification: 54Axx, 54Bxx.

Keywords: Generalized topologies, hereditary classes, \mathcal{H}_g -closed sets, \mathcal{H}_g -open sets, \mathcal{H}_g -normal spaces, \mathcal{H}_g -regular spaces, *- generalized topology.

I. INTRODUCTION

Let X be a non empty set and expX be the power set of X. A collection $\mu \subset \exp X$ is called a generalized topology on X if $\emptyset \in \mu$ and μ is closed for arbitrary unions [1]. (X, μ) is called a generalized topological space and the members of μ are called μ -open sets and their complements are called μ -closed sets. An ideal \mathcal{I} on X is a non empty family of subsets of X satisfying (i) $A \subset B$, $B \in \mathcal{I}$ implies $A \in \mathcal{I}$; (ii) $A, B \in \mathcal{I}$ implies A \cup B $\in \mathcal{I}$. If τ is a topologyon X and \mathcal{I} is an ideal on X, then (X, \mathcal{J}) is called an ideal space. Jankovic and Hamlett [4] have introduced another topology called *topology by using a given ideal \mathcal{I} and a given topology τ on X, which is finer than τ . In [3], Csaszar introduced hereditary classes. A non empty family \mathcal{H} of subsets of X is called a hereditary class if it satisfies only condition (i) of ideals, i.e. $A \subset B, B \in \mathcal{H}$ implies A $\in \mathcal{H}$. Then he introduced an operator ()*: $expX \rightarrow expX$, using a given generalized topology μ and a hereditary class \mathcal{H} on X. He defined another operator c*: expX $\rightarrow expX$, using the operator ()* by c*(A) = A UA* for A \subset X, which is monotonic, enlarging and idempotent. This operator c* induces another generalized topology called μ^* -generalized topology, which is finer than μ . The members of μ^* are called * – open sets and their complements are called * -closed sets.

In [6], the authors have introduced the notions of \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces using \mathcal{I}_g -open sets (A \subset X is called \mathcal{I}_g -closed if A* \subset U whenever U is open and A \subset U and complements of \mathcal{I}_g -closed sets are \mathcal{I}_g -open). They have studied the characterizations and properties of such spaces.

The purpose of this paper is to introduce the concepts of \mathcal{H}_g -normal and \mathcal{H}_g -regular hereditary spaces using \mathcal{H}_g -open sets to investigate whether the characterizations and properties of \mathcal{I}_g -normal and \mathcal{I}_g -regular spaces remain valid by dropping some conditions of topology to form generalized topology and ideal to hereditary classes.

Let (X, μ) be a generalized topological space and \mathcal{H} be a hereditary class on X, then (X, μ, \mathcal{H}) is called hereditary space. If $A \subset X$, $cl_{\mu}(A)$ and $int_{\mu}(A)$ will denote the μ -closure and μ -interior of set A in generalized topological space (X, μ) respectively and $cl^*(A)$ and $int^*(A)$ will denote the μ^* -closure and μ^* interior of set A in generalized topological space (X, μ^*) , respectively. $A \subset X$ is called \mathcal{H}_g -closed if $A * \subset U$ whenever U is μ -open and $A \subset U$ and complement of \mathcal{H}_g -closed set is called \mathcal{H}_g -open. A subset A of a generalized topological space (X,μ) is called g- μ closed if $cl_{\mu}(A) \subset U$ whenever U is μ -open and $A \subset U$ and complement of g- μ -closed set is called g- μ -open.

II. \mathcal{H}_{g} -NORMAL AND $g\mathcal{H}$ -NORMAL SPACES

Definition 1. A hereditary space (X, μ, \mathcal{H}) is said to be \mathcal{H}_g -normal if for each pair of disjoint μ -closed sets A and B, there exists disjoint \mathcal{H}_g -open sets U and V such that $A \subset U$ and $B \subset V$.

Since every μ -open set is \mathcal{H}_g -open set, every μ -normal is \mathcal{H}_g -normal. But the converse need not be true, shown as in the following example:

Example 2. Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. Then $\emptyset^* = \emptyset$, $(\{a, b\})^* = \{b\}$, $(\{a, c\})^* = \{c\}, (\{a\})^* = \emptyset$ and $X^* = \{b, c\}$. Every μ -open set is *-closed and therefore every subset of X is \mathcal{H}_g -open. This means (X, μ, \mathcal{H}) is \mathcal{H}_g -normal. Also $\{b\}$ and $\{c\}$ are disjoint μ -closed sets which arenotseparated by disjoint μ -open sets and therefore (X, μ, \mathcal{H}) is not μ -normal.

Theorem 3. Let (X, μ, \mathcal{H}) be a hereditary space. Then the following are equivalent:

1. X is \mathcal{H}_q -normal.

2. For each pair of disjoint μ -closed sets A and B, there exist disjoint \mathcal{H}_g -open sets U and V such that $A \subset U$ and $B \subset V$.

3. For each μ -closed set A and a μ -open set U containing A, there exists an \mathcal{H}_g -open set V such that A $\subset V \subset cl^*(V) \subset U$.

Proof. $1 \Rightarrow 2$. follows from the definition. $2 \Rightarrow 3$. Let A be $a\mu$ -closed set and U be a μ -open set containing A. Then A and X- U are disjoint μ -closed sets, there exist disjoint \mathcal{H}_g -open sets V and W such that $A \subset V$ and X - U $\subset W$. Also $V \cap W = \emptyset$ implies that $V \cap int^*(W) = \emptyset$ and therefore $cl^*(V) \subset X$ - $int^*(W)$. Since X - U is μ -closed and W is \mathcal{H}_g -open, X - U $\subset W, X$ - U $\subset int^*(W)$, X - $int^*(W) \subset U$. Therefore $A \subset V \subset cl^*(V) \subset X$ - $int^*(W) \subset U$.

 $3 \Rightarrow 1$. Let A and B be any two disjoint μ -closed sets in X. Thenthere exist an \mathcal{H}_g -open set V such that $A \subset V \subset cl^*(V) \subset X - B$.Let $W = X - cl^*(V)$, then V and W are disjoint \mathcal{H}_g -open sets such that $A \subset V$ and $B \subset W$ which proves that X is \mathcal{H}_g -normal.

Theorem 4. Let (X, μ, \mathcal{H}) be an \mathcal{H}_g -normal space. If F is μ -closed and A is a g- μ -closed set such that $A \cap F = \emptyset$, then there exist disjoint \mathcal{H}_g -open sets U and V such that $A \subset U$ and $F \subset V$.

Proof. $A \cap F = \emptyset$, $A \subset X - F$, where X - F is μ -open. Soc $l_{\mu}(A) \subset X - F$. $cl_{\mu}(A) \cap F = \emptyset$ and X is \mathcal{H}_{g} -normal, there exist disjoint \mathcal{H}_{g} -open sets U and V such that $cl_{\mu}(A) \subset U$ and $F \subset V$.

The following corollary gives characterization of μ -normal spaces. If we take $\mathcal{H} = \{\emptyset\}$ in above theorem, then we have the corollarybelow:

Corollary 5. Let (X, μ) be a μ -normal space. If F is μ closed and A is a g- μ -closed set such that A \cap F = \emptyset , then there exist disjoint g- μ -open sets U and V such that A \subset U and F \subset V.

Theorem 6. Let (X, μ, \mathcal{H}) be a hereditary space which is \mathcal{H}_{g} -normal. Then the following conditions hold:

1. For each μ -closed set A and each g- μ -open set B containing A,there exists an \mathcal{H}_g -open set U such that A $\subset int^*(U) \subset U \subset B$.

2. For each g- μ -closed set A and each μ -open set B containing A,there exists an \mathcal{H}_g -closed set U such that $A \subset U \subset cl^*(U) \subset B$.

Proof. 1. Let A be a μ -closed set and B be a g- μ -open setcontaining A. Then A \cap (X - B) = Ø where A is a μ -closed set andX - B is g- μ -closed set. By above theorem, there exist disjoint \mathcal{H}_g -open sets U and V such that A \subset U and X - B \subset V. Since U andV are disjoint, U \subset X - V . Also A \subset *int*^{*}(U), since A is μ -closedset and A \subset U. Therefore, A \subset *int*^{*}(U) \subset U \subset X - V \subset B. 2. Let A be a g- μ -closed set and B be a μ -open set containing A.Then X - B \subset X - A, where X - A is g- μ -open set and X - B is μ -closed set. By 1., there exists an \mathcal{H}_g -open set V such that X - B \subset *int*^{*}(V) \subset V \subset X - A. Therefore, A \subset X - V \subset cl^* (X - V) \subset B.If we take U = X - V, then A \subset U \subset cl^* (U) \subset B and U is an \mathcal{H}_g -closed set.

The following corollary gives characterization of μ -normal spaces. If we take $\mathcal{H} = \{\emptyset\}$ in above theorem, then we have the corollary below:

Corollary 7. Let (X, μ) be a μ -normal space. Then the following conditions hold:

1. For each μ -closed set A and each g- μ -open set B containing A,there exists a g- μ -open set U such that A $\subset int_{\mu}(U) \subset U \subset B$.

2. For each g- μ -closed set A and each μ -open set B containing A,there exists a g- μ -closed set U such that A $\subset U \subset cl_{\mu}(U) \subset B$.

Definition 8. A hereditary space (X, μ, \mathcal{H}) is said to be g- \mathcal{H} -normal if for each pair of disjoint \mathcal{H}_g -closed sets A and B, there exists disjoint μ -open sets U and V such that $A \subset U$ and $B \subset V$.

Since every μ -closed set is \mathcal{H}_g -closed, every g- \mathcal{H} -normal space is μ -normal. But the converse need not be true shown as in the following example:

Example 9. Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. Then $(\{a\})^* = \emptyset$. Every μ -open set is *-closed and therefore every subset of X is \mathcal{H}_g -closed. $\{a, b\}$ and $\{c, d\}$ are disjoint \mathcal{H}_g -closed sets which are not separated by disjoint μ -open sets, so (X, μ, \mathcal{H}) is not g- \mathcal{H} -normal. Also there is no pair of disjoint μ -closed sets, so (X, μ, \mathcal{H}) is obviously μ -normal.

Theorem 10. Let (X, μ, \mathcal{H}) be a hereditary space. Then the following are equivalent:

1. X is g- \mathcal{H} -normal.

2. For each \mathcal{H}_g -closed set A and an \mathcal{H}_g -open set B containing A,there exists a μ -open set V such that A \subset V $\subset cl_{\mu}(V) \subset B$.

Proof. $1 \Rightarrow 2$. Let A be an \mathcal{H}_g -closed set and B be an \mathcal{H}_g -openset containing A. Then A and X - B are disjoint \mathcal{H}_g -closed sets, there exist disjoint μ -open sets V and W such that $A \subset V$ and X - B \subset W. Also $V \cap W = \emptyset$ implies that $cl_{\mu}(V) \subset X - W$. Therefore $A \subset V \subset cl_{\mu}(V) \subset X - W \subset B$.

 $2 \Rightarrow 1$. Let A and B be any two disjoint \mathcal{H}_g -closed sets in X. ThenA \subset X - B, where X - B is \mathcal{H}_g -open set. Then there exist μ -open setV such that A \subset V $\subset cl_{\mu}(V)$ \subset X - B. Let W = X - $cl_{\mu}(V)$, thenV and W are disjoint μ -open sets such that A \subset V and B \subset W.Therefore (X, μ, \mathcal{H}) is *g*- \mathcal{H} -normal.

If we take $\mathcal{H} = \{\emptyset\}$ in the above theorem, then we have the following characterization of g- μ -normal spaces.

Corollary 11. Let (X, μ) be a generalized topological space. Then the following are equivalent:

1. X is g- μ -normal.

2. For each *g*- μ -closed set A and each *g*- μ -open set B containing A, there exists a μ -open set U such that A \subset U \subset $cl_{\mu}(U) \subset$ B.

Theorem 12. Let (X, μ, \mathcal{H}) be a hereditary space. Then the following are equivalent:

1. X is g- \mathcal{H} -normal.

2. For each pair of disjoint \mathcal{H}_g -closed sets A and B, there exists a μ -open set V containing A such that $cl_{\mu}(V) \cap B = \emptyset$.

3. For each pair of disjoint \mathcal{H}_g -closed sets A and B, there exists a μ -open set U containing A and a μ -open set V containing B suchthat $cl_{\mu}(U) \cap cl_{\mu}(V) = \emptyset$.

Proof. 1 \Rightarrow 2. Let A and B be disjoint \mathcal{H}_g -closed sets in X. Then A \subset X - B, where X - B is \mathcal{H}_g -open set. There exists a μ -open set V such that A \subset V \subset $cl_{\mu}(V) \subset$ X - B, and $socl_{\mu}(V) \cap B = \emptyset$.

2 ⇒ 3. Let A and B be disjoint \mathcal{H}_g -closed sets in X. Then there exists a μ -open set U such that A ⊂ U and $cl_{\mu}(U) \cap B = \emptyset$. Now $cl_{\mu}(B)$ and B are disjoint \mathcal{H}_g closed sets in X. Therefore there exists a μ -open set V such that B ⊂ V and $cl_{\mu}(U) \cap cl_{\mu}(V) = \emptyset$.

 $3 \Rightarrow 1$. obviously true.

The following corollary gives a characterization of g- μ -normalspaces if we take $\mathcal{H} = \{\emptyset\}$ in the above theorem. **Corollary 13.** Let (X,μ) be a generalized topological space. Then the following are equivalent:

1. X is g- μ -normal.

2. For each pair of disjoint g- μ -closed sets A and B, there exists a μ -open set V containing A such that $cl_{\mu}(V) \cap B = \emptyset$.

3. For each pair of disjoint $g-\mu$ -closed sets A and B, there exists $a\mu$ -open set U containing A and a μ -open set V containing B such that $cl_{\mu}(U) \cap cl_{\mu}(V) = \emptyset$.

Theorem 14. Let (X, μ, \mathcal{H}) be a *g*- \mathcal{H} -normal space. If A and B are disjoint \mathcal{H}_g -closed sets in X, then there exists disjoint μ -opensets U and V such that $cl^*(A) \subset U$ and $cl^*(B) \subset V$.

Proof. Let A and B be disjoint \mathcal{H}_g -closed sets in X. Then there exists a μ -open set U containing A and a μ -open set V containingB such that $cl_{\mu}(U) \cap cl_{\mu}(V) = \emptyset$. Also A is \mathcal{H}_g -closed, A \subset U, therefore $cl^*(A) \subset U$. Similarly $cl^*(B) \subset V$.

Taking $\mathcal{H} = \{\emptyset\}$ in the above theorem, gives a property of g- μ -normal spaces as shown in the corollary:

Corollary 15. Let (X, μ) be a g- μ -normal space. If A and Bare disjoint g- μ -closed sets in X, then there exists disjoint μ -opensets U and V such that $cl_{\mu}(A) \subset U$ and $cl_{\mu}(B) \subset V$.

Theorem 16. Let (X, μ, \mathcal{H}) be a *g*- \mathcal{H} -normal space. If A isan \mathcal{H}_g -closed set and B is an \mathcal{H}_g -open set containing A, then there exists a μ -open set U such that $A \subset cl^*(A) \subset U \subset int^*(B) \subset B$.

Proof. Let A be an \mathcal{H}_g -closed set and B be an \mathcal{H}_g -open setcontaining A. Since A and X - B are disjoint \mathcal{H}_g -closed sets, thereexist disjoint μ -open sets U and V such that $cl^*(A) \subset U$ and $cl^*(X - B) \subset V$. Now X - $int^*(B) = cl^*(X - B) \subset V$ implies that $X - V \subset int^*(B)$. Also $U \cap V = \emptyset$, $U \subset X - V$ and so $A \subset cl^*(A) \subset U \subset X - V \subset int^*(B) \subset B$. Taking $\mathcal{H} = \{\emptyset\}$ in the above theorem, gives a property of g- μ -normal spaces as shown in the corollary:

Corollary 17. Let (X, μ) be a g- μ -normal space. If A is a g- μ -closed set and B is a g- μ -open set containing A, then there exists a μ -open set U such that $A \subset cl_{\mu}(A) \subset U \subset int_{\mu}(B) \subset B$.

The following theorem gives a characterization of μ -normal spaces n terms of g- μ -open sets:

Theorem 18. Let (X, μ) be a generalized topological space. Then the following are equivalent:

1. X is μ -normal.

2. For each pair of disjoint μ -closed sets A and B, there exist disjoint g- μ -open sets U and V such that A \subset U and B \subset V.

3. For each μ -closed set A and a μ -open set V containing A, there exists a g- μ -open set U such that A $\subset U \subset cl_{\mu}(U) \subset V$.

III. \mathcal{H}_q -REGULAR AND $g\mathcal{H}$ -REGULAR SPACES

Definition 19. A hereditary space (X, μ, \mathcal{H}) is said to be \mathcal{H}_g -regular if for each point x and a μ -closed set B not containing x,there exists disjoint \mathcal{H}_g -open sets U and V such that $x \in U$ and $B \subset V$.

Since every μ -open set is \mathcal{H}_g -open set, every μ -regular is \mathcal{H}_g -regular. But the converse need not be true, as shown in the following example:

Example 20. Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{H} = \{\emptyset, \{a\}\}$. Then $\emptyset^* = \emptyset$, $(\{a, b\})^* = \{b\}$, $(\{a, c\})^* = \{c\}, (\{a\})^* = \emptyset$ and $X^* = \{b, c\}$. Every μ -open set is *-closed and therefore every subset of X is \mathcal{H}_g -open. This means (X, μ, \mathcal{H}) is \mathcal{H}_g -regular. Also $\{c\}$ is μ -closed set not containing b and $\{c\}$ and b are not separated by disjoint μ -open sets and therefore (X, μ, \mathcal{H}) is not μ -regular.

Theorem 21. Let (X, μ, \mathcal{H}) be a hereditary space. Then the following are equivalent:

1. X is \mathcal{H}_{g} -regular.

2. For each μ -closed set B not containing $x \in X$, there exist disjoint \mathcal{H}_g -open sets U and V such that $x \in U$ and B \subset V.

3. For each μ -open set U containing $x \in X$, there exists an \mathcal{H}_q -openset V such that $x \in V \subset cl^*(V) \subset U$.

Proof. $1 \Rightarrow 2$. follows from the definition.

 $2 \Rightarrow 3$. Let U be a μ -open set such that $x \in U$. Then X - U is μ -closed set not containing x. Therefore, there exist disjoint \mathcal{H}_g -open sets V and W such that $x \in V$ and X - U \subset W. ThereforeX - U \subset int^{*}(W) and X -int^{*}(W) \subset U. Also V \cap W = Øimplies that V \cap int^{*}(W) = Ø, $cl^*(V) \subset X$ -int^{*}(W). Thereforex $\in V \subset cl^*(V) \subset U$.

3 ⇒1. Let B be any μ -closed set not containing x in X. Then there exist an \mathcal{H}_g -open set V such that x ∈ V ⊂ $cl^*(V) \subset X - B$. Let $W = X - cl^*(V)$, then V and W are disjoint \mathcal{H}_g -open sets such that $x \in V$ and $B \subset W$, which proves that X is \mathcal{H}_g -regular.

The following corollary gives characterization of μ -regular spaces. If we take $\mathcal{H} = \{\emptyset\}$ in above theorem, then we have the corollary below:

Corollary 22. Let (X, μ) be a generalized topological space. Then the following are equivalent:

1. X is μ -regular.

2. For each μ -closed set B not containing $x \in X$, there exist disjoint *g*-open sets U and V such that $x \in U$ and B $\subset V$.

3. For each μ -open set U containing $x \in X$, there exists a *g*-openset V such that $x \in V \subset cl_{\mu}(V) \subset U$.

Theorem 23. If every μ -open subset of a hereditary space (X, μ, \mathcal{H}) is *-closed, then (X, μ, \mathcal{H}) is \mathcal{H}_a regular.

Proof. Let every μ -open set of X be *-closed. Then every subset of X is \mathcal{H}_g -closed and therefore every subset of X is \mathcal{H}_g -open. Therefore (X, μ, \mathcal{H}) is \mathcal{H}_g regular.

The following example shows that the converse of the above theorem need not be true:

Example 24. Let X = R with the usual topology μ which is also a generalized topology and $\mathcal{H} = \{\emptyset\}$. Then X is μ -regularand therefore \mathcal{H}_g -regular. But μ -open sets are not μ -closed and therefore μ -open sets are not *-closed.

The following theorem gives characterizations of μ -regular hereditary spaces where the hereditary class is completely codense.

Theorem 25. Let (X, μ, \mathcal{H}) be a hereditary space, where \mathcal{H} is completely codense. Then the following are equivalent:

1. X is μ -regular.

2. For each μ -closed set B not containing $x \in X$, there exist disjoint*-open sets U and V such that $x \in U$ and B $\subset V$.

3. For each μ -open set U containing $x \in X$, there exists a *-open set V such that $x \in V \subset cl^*(V) \subset U$.

Proof. $1 \Rightarrow 2$: Let B be μ -closed set not containing $x \in X$.Since X is μ -regular, there exist disjoint μ -open sets U and V suchthat $x \in U$ and $B \subset V$. Every μ -open set is *-open, which proves2.

2 ⇒ 3: Let U be μ -open set containing x ∈ X. Then X -U is μ -closed set not containing x. By 2, there exist disjoint *-open sets V and W such that x ∈ V and X - U ⊂ W. V and W are disjoint, V ⊂ X - W and X - W is *closed, $cl^*(V) ⊂ X - W ⊂ U$. HenceV is the required *open set such that x ∈ V ⊂ $cl^*(V) ⊂ U$.

3 ⇒ 1: Let B be μ -closed set not containing x ∈ X. Then X - Bis μ -open set containing x. By 3, there exists a *-open set V such that x ∈ V ⊂ $cl^*(V) ⊂ X$ - B. Let U = X - $cl^*(V)$, thenB ⊂ U and U and V are disjoint*-open sets. Since \mathcal{H} is completely codense, therefore every *open set is μ - α -open. So B ⊂ U ⊂ $int_{\mu}(cl_{\mu}(int_{\mu}(U))) =$ G and V ⊂ $int_{\mu}(cl_{\mu}(int_{\mu}(V))) =$ H. Then G and H are disjoint μ -open sets such that x ∈ H and B ⊂ G. HenceX is μ -regular.

ACKNOWLEDGEMENT

I am thankful to Dr. Navpreet Singh Noorie for his kind guidance and help.

REFERENCES

[1]. A. Csaszar, (2002). Generalized topology, Generalized continuity, *Acta Math. Hungar.*, **96**, 351-357.

[2]. A. Csaszar, (2005). Generalized open set in generalized topologies, *Acta Math. Hungar.*, **106**, 53-66.

[3]. A. Csaszar, (2008). Modifications of generalized topologies via hereditary classes, Acta Math. Hungar., **120**, 275-279.

[4]. D. Jankovic, T.R. Hamlett, (1990). New topologies from old via ideals, Amer. Math. Monthly, **97**, 295-310.

[5]. K. Kurakowski, (1966). *Topology 1*, Academic Press (New York, 1966).

[6]. M. Navaneethakrishnan, J. Paulraj Joseph, D. Sivaraj, (2009). *Ig*-normal and *Ig*-regular spaces, *Acta Math. Hungar.*, **125**, 327-340.