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I. INTRODUCTION

Let X be a non empty set and expX be the power set of
X. A collection u € expX is called a generalized
topology on X if @ € pand p is closed for arbitrary
unions [1]. (X, w) is called a generalized topological
space and the members of pare called u-open sets and
their complements are called p-closed sets. An ideal J
on X is a non empty family of subsets of X satisfying
(i) A © B, BE Jimplies A € J; (ii)) A, B € J implies A
U B € 7. If 7 is a topologyon X and Jis an ideal on X,
then (X, J7) is called an ideal space. Jankovic and
Hamlett [4] have introduced another topology called *-
topology by using a given ideal J and a given topology
7 on X, which is finer thant. In [3], Csaszar introduced
hereditary classes. A non empty family # of subsets of
X 1is called a hereditary class if it satisfies only
condition (i) of ideals, i.e. A € B, B € H implies A
€ H. Then he introduced an operator ()*: expX —expX,
using a given generalized topology pand a hereditary
class H on X. He defined another operator c*: expX
—expX, using the operator ()* by c*(A) = A UA* for A
c X, which is monotonic, enlarging and idempotent.
This operator c¢* induces another generalized
topologycalled u*-generalized topology, which is finer
than u. The members ofu* are called * —open sets and
their complements are called * —closed sets.

In [6], the authors have introduced the notions
of J;-normal and Jg-regular spaces using Jg-open sets
(A c X is called I -closed if A*cU whenever U is
open and A < U and complements of J -closed sets are
Jg-open). They have studied the characterizations and
properties of such spaces.

The purpose of this paper is to introduce the
concepts of Hj-normal and Hj-regular hereditary
spaces using Hy-open sets to investigate whether the
characterizations and properties of J;-normal and J,-
regular spaces remain valid by dropping some
conditions of topology to form generalized topology
and ideal to hereditary classes.

Let (X, u) be a generalized topological space andH be
a hereditary class on X, then (X, u,H) is called
hereditary space. If A cX, cl,(4) and int,(4) will
denote the p-closure and p-interior of set A in
generalized topological space (X, u) respectively and
cl*(A) and int*(A) will denote the p*-closure and p*-
interior of set A in generalized topological space (X,
u*), respectively. Ac X is called Hy-closed if Ax c U
whenever U is p-open and A < U and complement of
Hy-closed set is called Hj-open. A subset A of a
generalized topological space (X,u) is called g-p-
closed if cl,(A) € U whenever U is y-open and A c U
and complement of g-p-closed set is called g-u-open.

IL. 3 ,-NORMAL AND g#-NORMAL SPACES

Definition 1. A hereditary space (X, u, H) is said to be
H,y-normal if for each pair of disjoint p-closed sets A
and B, there existsdisjoint H -open sets U and V such
that AcUand BC V.

Since every p-open set is Hy-open set, every
p-normal is 3 -normal. But the converse need not be
true, shown as in the following example:

Example 2. Let X = {a, b, ¢}, u= {@,{a},{a, b},{a, ¢},
X} and H = {@.{a}}. Then @* = @, ({a, b})* = {b},
({a, ch* = {c},({a})* = @ and X* = {b, c}. Every u-
open set is *-closed andtherefore every subset of X is
Hy-open. This means (X,u, H) isHy-normal. Also {b}
and {c} are disjoint u-closed sets which arenotseparated
by disjoint p-open sets and therefore (X, p, H') is not u-
normal.

Theorem 3. Let (X, u, H') be a hereditary space. Then
thefollowing are equivalent:

1. X is Hy-normal.

2. For each pair of disjoint u-closed sets A and B, there
existdisjoint Hg-open sets U and V such that A ¢ U
and Bc V.

3. For each p-closed set A and a p-open set U
containing A, thereexists an H -open set V such that A
cvVccl(V)cU.
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Proof. 1 = 2. follows from the definition. 2 = 3. Let A
be au-closed set and U be a p-open set containingA.
Then A and X- U are disjoint u-closed sets, there exist
disjoint#{;-open sets V and W such that Ac V and X -
U c W. AlsoV NW = @ implies that V N int*(W) = @
and therefore cl*(V) c X- int*(W). Since X - U is pu-
closed and W is H;-open, X -U € W.X - U c int" (W),
X - int*(W) c U. Therefore A c V ccl*(V) cX -
int*(W) c U.

3 = 1. Let A and B be any two disjoint u-closed sets in
X. Thenthere exist an H;-open set V such that A ¢ V
ccl’(V)c X-BLlet W=X-cl"(V), then V and W
are disjoint H;-open sets suchthat A € Vand B ¢ W
which proves that X is #{;-normal.

Theorem 4. Let (X, u, H) be an }[g—normal space. If F
is p-closed and A is a g- pu-closed set such that A N F
=@, then thereexist disjoint 7{;-open sets U and V such
that AcUandFc V.

Proof. AN F=0, Ac X -F, where X - F is p-open.
Socl,(A) € X -F. cl,(A) N F=0 and X is }{;-normal,
thereexist disjoint Hj-open sets U and V such that
cl,(A)cUandFcC V.

The following corollary gives characterization
of p-normal spaces.If we take H = {@} in above
theorem, then we have the corollarybelow:

Corollary 5. Let (X, 1) be a yu-normal space. If F is p-
closedand A is a g-u-closed set such that A N F = @,
then there existdisjoint g-u-open sets U and V such that
AcUandFcV.

Theorem 6. Let (X, p, ') be a hereditary space which
is Hy-normal. Then the following conditions hold:

1. For each p-closed set A and each g-p-open set B
containing A,there exists an H;-open set U such that A
cint*(U)c UcB.

2. For each g-p-closed set A and each p-open set B
containing A,there exists an Hj-closed set U such that
A cUccl*(U) cB.

Proof. 1. Let A be a pu-closed set and B be a g-u-open
setcontaining A. Then A N(X - B) = @ where A is a u-
closed set andX - B is g-p-closed set. By above
theorem, there exist disjoint H -open sets U and V such
that Ac Uand X — B < V. Since U andV are disjoint,
Uc X-V.Also A cint*(U), since A is u-closedset
and A c U. Therefore, A c int*(U)c Uc X-V cB.
2. Let A be a g-u-closed set and B be a p-open set
containing A.Then X - B € X - A, where X - A is g-y-
open set and X - B is u-closed set. By 1., there exists an
H,-open set V such that X - B c int*(V) c Vc X - A.
Therefore, A€ X -V c cl*(X - V) c B.If we take U =
X-V,then Ac U c cl"(U) c B and U is anH,-closed
set.

The following corollary gives characterization of u-
normal spaces.If we take ' = {@} in above theorem,
then we have the corollary below:
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Corollary 7. Let (X, u) be a u-normal space. Then the
following conditions hold:

1. For each p-closed set A and each g-u-open set B
containing A,there exists a g-u-open set U such that A
c int,(U)cUcB.

2. For each g-p-closed set A and each p-open set B
containing A,there exists a g-u-closed set U such that A
cUccl,(U)cB.

Definition 8. A hereditary space (X, u, H) is said to be
g- H-normal if for each pair of disjoint H-closed sets
A and B, thereexists disjoint p-open sets U and V such
tht AcUand BC V.

Since every p-closed set is Hy-closed, every
g- H-normal spaceis pu-normal. But the converse need
not be true shown as in the following example:
Example 9. Let X = {a, b, ¢, d}, u = {@,{a},X} and H
= {@,{a}}. Then ({a})* =@. Every u-open set is *-
closed and therefore every subset of X is Hy-closed. {a,
b} and {c, d} are disjointH -closed sets which are not
separated by disjoint pu-open sets, so (X, u, H) is not g-
H-normal. Also there is no pair of disjoint u-closed
sets, so (X, u, H) is obviously y-normal.

Theorem 10. Let (X, u, H) be a hereditary space. Then
the following are equivalent:

1. X is g- H-normal.

2. For each Hy-closed set A and an Hj;-open set B
containing A,there exists a p-open set V such that A c
Vccl,(V)cB.

Proof. 1 = 2. Let A be an H -closed set and B be an
H,-openset containing A. Then A and X - B are
disjoint H-closed sets,there exist disjoint y-open sets
V and W such that Ac VandX -B c W. AlsoVNW
= @ implies that cl, (V) € X - W. Therefore A € V
ccl,(V)ecX-WcB.

2= 1. Let A and B be any two disjoint H -closed sets
in X. ThenA c X - B, where X - B is }[g—open set.
Then there exist u-open setV such that Ac V < cl, (V)
Cc X-B.Let W=X-cl,(V), thenV and W are disjoint
u-open sets such that A € V and B € W.Therefore (X,
w,H) is g- H-normal.

If we take H'= {@} in the above theorem, then
we have the following characterization of g-g-normal
spaces.

Corollary 11. Let (X, u) be a generalized topological
space.Then the following are equivalent:

1. X is g-u-normal.

2. For each g-p-closed set A and each g-p-open set B
containingA, there exists a u-open set U such that A <
Uccl,(U) cB.

Theorem 12. Let (X, u,H) be a hereditary space. Then
the following are equivalent:

1. X'is g-H -normal.
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2. For each pair of disjoint Hy-closed sets A and B,
there exists a p-open set V containing A such that
cl,(V)nB=9.

3. For each pair of disjoint H -closed sets A and B,
there exists au-open set U containing A and a p-open
set V containing B suchthat cl, (U) N cl, (V)= 0.
Proof. 1= 2. Let A and B be disjoint Hy-closed sets in
X.Then A c X - B, where X - B is H;-open set. There
existsa p-open set V such that A ¢ V c ¢l (V) € X -
B, and socl#(V) NB=0.

2 = 3. Let A and B be disjoint H,-closed sets in X.
Then thereexists a p-open set U such that A ¢ U and
cl,(U) N B = @. Nowcl,(B) and B are disjoint F{,-
closed sets in X. Therefore thereexists a p-open set V
such that B ¢ V and cl, (U) ncl, (V) = .

3=1. obviously true.

The following corollary gives a characterization of g-u-
normalspaces if we take ' = {@} in the above theorem.
Corollary 13. Let (X,u) be a generalized topological
space.Then the following are equivalent:

1. X is g-u-normal.

2. For each pair of disjoint g-u-closed sets A and B,
there exists ap-open set V containing A such that
cl, (V)NnB=9.

3. For each pair of disjoint g-p-closed sets A and B,
there exists au-open set U containing A and a p-open
set V containing B such that cl, (U) n cl, (V) = @.
Theorem 14. Let (X, p, H) be a g-H -normal space. If
A andB are disjoint Hy-closed sets in X, then there
exists disjoint y-opensets U and V such that cl*(A) c U
and cl*(B) Cc V.

Proof. Let A and B be disjoint #j;-closed sets in X.
Then thereexists a u-open set U containing A and a u-
open set V containingB such that cl, (U) n cl, (V) = @.
Also A is Hy-closed, A  U,therefore cl*(A) c U
Similarly cl*(B) € V.

Taking H'= {@} in the above theorem, gives a
property of g-p-normal spaces as shown in the
corollary:

Corollary 15. Let (X, u) be a g-p-normal space. If A
and Bare disjoint g-u-closed sets in X, then there exists
disjoint pu-opensets U and V such that cl, (A) € U and
cl,(B)c V.

Theorem 16. Let (X, p, H) be a g-H -normal space. If
A isan Hg-closed set and B is an F{j -open set
containing A, then thereexists a u-open set U such that
Accl*(A)cUcint*(B)c B.

Proof. Let A be an H -closed set and B be an H -open
setcontaining A. Since A and X - B are disjoint H-
closed sets, thereexist disjoint u-open sets U and V
such that cl*(A) € U and cl*(X - B) € V . Now X -
int*(B) = cl*(X - B) © V implies that X - V c int*(B).
AlsoUNV=p,UcX-VandsoAcCcl*(A)c U
cX-Vcint*(B)cB.

Taking H = {@} in the above theorem, gives a property
of g-u-normal spaces as shown in the corollary:
Corollary 17. Let (X, u) be a g-pu-normal space. If A is
ag-u-closed set and B is a g-p-open set containing A,
then thereexists a u-open set U such that A  cl,(A)
U cint,(B) c B.

The following theorem gives a characterization of u-
normal spacesin terms of g-u-open sets:

Theorem 18. Let (X, u) be a generalized topological
space. Then the following are equivalent:

1. X is g-normal.

2. For each pair of disjoint u-closed sets A and B, there
exist disjoint g-p-open sets U and V such that A c U
andBc V.

3. For each p-closed set A and a p-open set V
containing A, there exists a g-y-open set U such that A
cUccl,(U)cV.

III. £ ;-REGULAR AND g#-REGULAR SPACES

Definition 19. A hereditary space (X, u,H) is said to
be H,-regular if for each point x and a u-closed set B
not containing x,there exists disjoint #{;-open sets U
and V such that x € UandB c V.

Since every p-open set is Hy-open set, every
p-regular is 3 -regular. But the converse need not be
true, as shown in the following example:

Example 20. Let X = {a, b, ¢}, u = {@,{a},{a, b},{a,
c}, X} and H = {@,{a}}. Then @* = @, ({a, b})* = {b},
({a, ch* = {c},({a})* = @ and X* = {b, c}. Every u-
open set is *-closed and therefore every subset of X is
Hy-open. This means (X, y, ) isH -regular. Also {c}
is p-closed set not containing b and {c} and b are not
separated by disjoint p-open sets and therefore (X,
u, H) is not u-regular.

Theorem 21. Let (X, u, H) be a hereditary space. Then
the following are equivalent:

1. Xis Hy-regular.

2. For each p-closed set B not containing x € X, there
existdisjoint };-open sets U and V such that x € U and
BcV.

3. For each p-open set U containing x €X, there exists
an H-openset V such thatx € V c cl*(V) c U.

Proof. 1 = 2. follows from the definition.

2 = 3. Let U be a p-open set such that x € U. Then X -
U isu-closed set not containing x. Therefore, there exist
disjoint 3{;-open sets V and W such that x € V and X -
U c W. ThereforeX - U c int*(W) and X -int*(W) C
U. Also V. N W = @implies that V nint*(W) = 0,
cl*(V) € X -int*(W). Thereforex € V c cl*(V) c U.

3 =1. Let B be any pu-closed set not containing x in X.
Thenthere exist an H -open set V such that x € V
ccl*(V)cX-B.
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Let W =X - cl*(V), then V and W are disjoint ,-open
sets suchthat x € V and B € W, which proves that X
isH,-regular.

The following corollary gives characterization
of p-regular spaces.If we take H = {@} in above
theorem, then we have the corollary below:

Corollary 22. Let (X, u) be a generalized topological
space.Then the following are equivalent:

1. X is py-regular.

2. For each p-closed set B not containing x € X, there
existdisjoint g-open sets U and V such that x € U and B
c V.

3. For each p-open set U containing x € X, there exists
a g-openset V such that x € V < ¢, (V) c U.

Theorem 23. If every p-open subset of a hereditary
space (X, u,H) is *-closed, then (X, w,H) is
Hregular.

Proof. Let every p-open set of X be *-closed. Then
every subset of X is Hy-closed and therefore every
subset of X is Hy-open.Therefore (X, w, H) is Hy-
regular.

The following example shows that the
converse of the above theorem need not be true:
Example 24. Let X = R with the usual topology u
whichis also a generalized topology and H = {@}. Then
X is p-regularand therefore H,-regular. But u-open sets
are not u-closed andtherefore p-open sets are not *-
closed.

The following theorem gives characterizations
of u-regular hereditary spaces where the hereditary
class is completely codense.

Theorem 25. Let (X, p,H) be a hereditary space,
where H'is completely codense. Then the following are
equivalent:

1. X is pu-regular.

2. For each p-closed set B not containing x € X, there
exist disjoint*-open sets U and V such that x € U and B
c V.

3. For each p-open set U containing x € X, there exists
a *-open set V such thatx € V c cl*(V) c U.

Proof. 1 = 2: Let B be p-closed set not containing x €
X.Since X is p-regular, there exist disjoint p-open sets
U and V suchthat x € U and B € V. Every p-open set is
*-open, which proves2.

2 = 3: Let U be p-open set containing x € X. Then X -
U is p-closed set not containing x. By 2, there exist
disjoint *-open sets V and W such that x € V and X - U
c W. V and W are disjoint,V € X - W and X - W is *-
closed, cl*(V) € X - W c U. HenceV is the required *-
open set such that x € V c cl*(V) c U.

3 = 1: Let B be u-closed set not containing x € X.
Then X - Bis p-open set containing x. By 3, there exists
a *-open set Vsuchthatx e Vc cl*(V)c X-B. Let U
=X -cl*(V), thenB ¢ U and U and V are disjoint*-open
sets. Since H is completely codense, therefore every *-
open set is u-a-open. So B ¢ U c int,(cl, (int,(U))) =
G and V cint,(cl,(int,(V))) = H. Then G and H are
disjoint p-open sets such that x € H and B < G.
HenceX is p-regular.
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